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Abstract

Contraflow evacuation planning strategy is very effective and widely accepted ap-
proach for the optimal use of available road network in evacuation management that
increases the outward road capacities from the disastrous areas with lane (arc) reversals
towards the safer places. It is highly applicable for shifting maximum number of evac-
uees from the disastrous areas to the safer places as quickly and efficiently as possible.
We introduce the partial contraflow approach by reversing only necessary arc capac-
ities to solve the earliest arrival contraflow problem with constant transit times and
present efficient algorithms. We solve the earliest arrival partial contraflow problem in
two terminal general network in pseudo-polynomial time complexity. On two terminal
series parallel network, we solve the problem in strongly polynomial time complexity.
Moreover, we present a fully polynomial approximation algorithm that solves the ear-
liest arrival partial contraflow problem on two terminal general network in polynomial
time. The unused arc capacities are very useful for the logistic and emergency supports
to the evacuees at disastrous areas.

Keywords: Evacuation planning, transportation network, contraflow, earliest arrival flow
problem.

1 Introduction

The challenges in evacuation planning have been vital because of rapid disasters and limited
road capacity. Use of mathematical modeling for evacuation planning is a growing research
area. Most of the research in evacuation planning is focused on the network optimization.
For more details of mathematical models used in evacuation planning, we refer to the survey
[1].

After disasters, the process of removing residence as quickly and efficiently as possible from
the disastrous areas to the safer places is an evacuation planning problem. The disastrous
areas and safer places are considered as sources S and sinks D, respectively, and the connec-
tion between these places are lanes or arcs. There may be number of intersections of street
between the connections that are considered as nodes. Each lanes have limited capacities and
fixed travel times. The flow is defined as the group of evacuees passing through the network
as a homogeneous group. In such transportation network, the evacuation planer discourage
people to move towards sources from sinks because of which the corresponding road lanes
are unoccupied. However, the lanes outwards from sources become more congested due to
large number of evacuees and vehicles on the streets.
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The partial contraflow reconfiguration reverses the idle directions of empty lanes towards
sinks satisfying the given constraints that increases the flow value, decrease the average
evacuation time and save some lane capacity with excess capacities [7, 8]. The partial
contraflow technique can be used by the emergency management team in urban areas to
optimize different aspects of traffic flow in evacuation planning. If a decision maker wants
to allow the maximum traffic flow at every time point from the beginning and listing unused
capacities of the road segments which can be used for any other purpose during emergency
management, finding the earliest arrival flow with partial lane reversals is very useful. Its
main advantage is that the predetermined time horizon, i.e., the estimated time within which
the evacuation process should be completed, is not necessary. An efficient method to estimate
the evacuation time for shifting evacuees from the sources to sinks is still demanding. So,
the problem of finding maximum flow from the beginning of time point with arc reversals is
important in evacuation planning. This problem is the earliest arrival contraflow problem
(EACFP).

From the series of literature on analytical contraflow approach [1, 6, 9], it is conformed
that the complete contraflow configuration increases the flow value up to double for given
time horizon. Similarly, evacuation time is minimized efficiently, if given flow value is to
be transshipped from S to D. However, the unnecessary arc reversals are not prevented
in the previous models. For example, if an arc has capacity 3 and we need to reverse only
capacity 2, the complete contraflow models do not care it and reverse all 3 capacities. In
this work, we add a new technique in previous model that enables to reverse only necessary
capacities of arcs which is named as partial contraflow approach. With partial contraflow
configuration, we solve the earliest arrival flow problem, i.e., flow is maximized at every time
point θ, 0 ≤ θ ≤ T with partial reversals of arc capacities.

This work is organized as follows. Section 2 sketches all the necessary notations and defini-
tions with the partial contraflow model. Section 3 formulates the earliest arrival contraflow
problems. The paper is concluded with Section 4.

2 Model of contraflow configuration

During evacuation process, a flow has to travel from disastrous areas (sources) to safe areas
(sinks or destinations) using a road network in which set of n nodes (sources, sinks, intersec-
tion of streets) V and set of m arcs (streets) A are included. Let S,D be the set of terminals
(sources and sinks) respectively. If we have single source and single sink, s and d, respec-
tively represent them. We represent each arc e by a pair (u, v). Each arc has integer capacity
b, i.e., maximum amount of flow units moving along each arc and transit time τ , i.e., the
time needed to travel an arc. Let T be the estimated time horizon within which the whole
evacuation process has to be completed. Set of time horizon is denoted by T = {0, 1, . . . , T}.
Let use assume that Bv = {e | e = (u, v) ∈ A} and Av = {e | e = (v, u) ∈ A}. Collecting all
data, the evacuation network is represented as N = (V,A, b, τ, S,D, T ).

Let non negative functions y : A → R+ and x : A×T → R+ represent the static and dynamic
flow, respectively. A dynamic s-d flow x for given time T satisfies the flow conservation and
capacity constraints (1-3). The inequality flow conservation constraint (2) allows to wait
flow at intermediate nodes, however, the equality constraint (replace the inequality in (2)
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by equality) forces that flow entering an intermediate node must leave it again immediately.

T∑
σ=τe

∑
e∈Bv

xe(σ − τe) =

T∑
σ=0

∑
e∈Av

xe(σ), ∀ v �∈ {s, d} (1)

θ∑
σ=τe

∑
e∈Bv

xe(σ − τe) ≥
θ∑

σ=0

∑
e∈Av

xe(σ), ∀ v �∈ {s, d}, θ ∈ T (2)

be(θ) ≥ xe(θ) ≥ 0, ∀ e ∈ A, θ ∈ T (3)

The earliest arrival flow problem maximizes val(x, θ) in (4) satisfying the constraints (1-3)
for all θ ∈ T.

max val(x, θ) =

θ∑
σ=0

∑
e∈As

xe(σ) =

θ∑
σ=τe

∑
e∈Bd

xe(σ − τe) (4)

Let the reversal of an arc e = (v, w) be e′ = (w, v). We assume that all arcs towards
a source s, i.e., (v, s) are empty in an emergency evacuation and all arcs outwards from
source, i.e., (s, v) may be congested due to large number of evacuees in the streets. To
design the algorithm for (partial) contraflow, with a point of view that all arcs towards the
sources from sinks can be reversed, we make use of what is known as auxiliary network
N = (V,E, b, τ , S,D, T ) of the evacuation network N = (V,A, b, τ, S,D, T ) as follows. The
arc set Ē contains all arcs ē that is formed from arc set A by reversing all empty arcs towards
sinks. The transit time and capacities of the auxiliary network are, respectively,

τe = τe = τe′ and be = be + be′

where an edge e ∈ E in N if e ∨ e′ ∈ A in N . The remaining graph structure and data are
unaltered.
Example 1. Let us consider an evacuation network as shown in Figure 1(a) in which each
node represents a city or a region and each arc represents the road segment between them.
Nodes s and d are modeled as a source and a sink nodes, respectively. Nodes x and y are
intermediate nodes. Each arc has capacity and transit time. For example, an arc between
nodes s and x has capacity 3 and transit time 1. If we assume that a time unit is 2 minutes,
it takes 2 minutes for evacuees to travel from s to x and a maximum of 3 evacuees can
simultaneously travel through the arc. Contraflow reconfiguration of the evacuation network
is represented in Figure 1(b) where arc capacities of both directions are added to form new
arc capacity but the transit time is same. So that maximum 6 unit flow can travel along arc
(s, x) in 2 minutes.

3 Earliest arrival contraflow

Authors in [7] investigated the dynamic contraflow problems with partial lane reversals
and presented efficients algorithms to solve it on number of particular networks. Based on
their finding, we describe the importance of partial contraflow configuration with following
example by computing the maximum dynamic partial contraflow solution.
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Figure 1: (a) Evacuation network (b) Reconfigured network

Example 2. Figure 2(a) represents the maximum static contraflow solution with complete
contraflow solution, from which we can compute the solution of maximum dynamic con-
traflow problem by solving the temporally repeated flow for time horizon T = 5 as in Equation
5

val(x.T ) = (T + 1)val(y)−
∑
e∈E

τēyē. (5)

where y is the maximum static flow of value val(y). From three paths P1 = s − x − y − d,
P2 = s−x−d and P3 = s− y−d with flow 2, 3 and 4, respectively give the maximum static
flow y = 9. For given time horizon T = 5, the maximum dynamic contraflow val(x, T ) =
16 is obtained with complete contraflow configuration. In addition to the maximum static
contraflow obtained in Figure 2(a), we calculate residual capacity of arcs scap = bē − xē in
Figure2(b) as follows. The maximum static contraflows along path s − x − y − d through
arcs (s, x),(x, y) and (y, d) is 2, along path s − x − d with arcs (s, x) and (x, d) is 3, and
along path s − y − d with arcs (s, y) and (y, d) is 4. By subtracting the total static flows
along an arc from the capacities of respective arcs, we compute the residual capacities as
(s, x) = 6 − 5 = 1 and (s, y) = 7 − 4 = 3. These residual capacities are saved for all time
θ ∈ T in all the temporally repeated paths using these arcs (s, x) and (s, y). The saved arc
capacities are allowed to flow along opposite direction (x, s) and (y, d) whenever required for
other purposes.

In this section, we introduce the abstract earliest arrival partial contraflow problem (EAPCFP)
(cf. Problem 1) which seeks to maximize the flow value at each point of time with path re-
versal capability by saving the unnecessary reversals of element capacities. On two-terminal
evacuation network, we present an efficient algorithm to solve it.
Problem 1. For given network N = (V,A, b, τ, S,D) with integer input , the EAPCFP is
to find the earliest arrival flow from S-D flow for all time θ, 0 ≤ θ ≤ T with partial reversals
of arc capacities.

In general the S-D EACFP is NP-hard even with the case of complete contraflow. From
this, we directly say that the S-D EAPCFP is NP-hard. However, the EACFP can be
solved efficiently in different particular networks. We use different temporally repeated flow
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Figure 2: (a) Complete contraflow (b) Partial Contraflow for maximum flow

algorithms as well as successive shortest path algorithms developed for different particular
networks that give the EAPCF solutions. For example, on two terminal general network
and series parallel network, the EAPCFP will be investigated. We modify the EACF algo-
rithm presented by authors in [10, 9] by reversing only partial arc capacities and present
Algorithm 1.
Algorithm 1. EACF algorithm with partial lane reversals

1. Input: Given an evacuation network N = (V,A, b, τ, s, d).

2. Obtain auxiliary network N = (V,E, b̄, τ̄ , s, d).

3. On the abstract network N , compute the earliest arrival flow.

4. Calculate scap(e, θ) = be − xē(θ). The capacity of the arc e at time θ is saved if
scap(e, θ) > 0, θ = 1, . . . , T .

5. Output: An EACF with saved capacities, if any, of arc for the evacuation network
N .

The earliest arrival flow, in Step 3 of our algorithm, is calculated by using different existing
algorithms. For the two terminal general network, one can apply the successive shortest
path computation as in [12] or [4] that gives the earliest arrival solution using successive
shortest path computations in corresponding time expanded network. However, we use the
non-standard chain decomposition introduced in [3] that also gives the earliest arrival flow
solution on the auxiliary network. Recall that the earliest arrival flow continues the already
obtained flows in earlier steps to forthcoming flows in forward steps, the final solution may
change the direction of arcs and obeys the backward flow laws in its processing. If the
arc reversals is made at any time whenever necessary, the EAPCFP can be solved using
these algorithms. Due to the successive shortest path computations, its time complexity is
pseudo-polynomial time. As Pyakurel and Dhamala [10] and [9] solved the earliest arrival
contraflow problem with complete contraflow configuration of evacuation network in discrete
time setting and continuous time setting, respectively, here we modify their algorithm for
the partial contraflow configuration.
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Example 3. As the shortest distances paths at all successive time points are necessary for
the earliest arrival contraflow, the maximum dynamic partial contraflow solution from Figure
2(b) also gives the earliest partial contraflow. This can be represented as in Figure 3.
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Figure 3: Earliest arrival partial contraflow solution of Figure 2(b)

From Figure 3, we can say that the earliest arrival partial contraflow can be computed with
temporally repeated flow on general two terminal network, however, it is not true always.
We consider Figure 4(a) in which the temporally repeated flow property will be violated while
computing the earliest arrival partial contraflow solution.

Figure 4(a) represents an evacuation scenario in which each arc contains integer capacity and
transit time. With contraflow configuration, we construct its auxiliary network and choose
the direction of arc randomly. First we choose the direction as in Figure 4(b). In the static
network, the maximum static flow is as shown in Table 1. Using the non-standard chain

Table 1: Optimal maximum static flow in auxiliary network, Figure 4(b)
Arcs (s,x) (s,y) (x,u) (x,d) (u,y) (y,d) (d,s)

Flow(y) 7 1 6 1 6 7 8

decomposition technique of [3], the earliest arrival flow can be obtained from Figure 4(b)
as follows. Let us fix the set of chain flows with Γ = {P1, P2, P3} with P1 = {s, y, v, x, d},
P2 = {s, x, v, y, d} and P3 = {s, x, u, y, d}. Note that Γ is not standard chain decomposition
because P2 ∈ Γ uses arc (v, x) and (y, v) that are in opposite direction which do not lie in
E. In Figure 4(c), we can see that, chain P2 starts using arc (y, v) in direction (v, y) at
time t = 3 and stops using it at time t = 4. From other side, the chain flow P1 starts
using arc (y, v) at time t = 1 and stops using it at time t = 4. Moreover, we can save
the unused arc capacity at each time point, for example, the capacities of arcs (y, v) and
(v, x) are saved by 4 units at time zero and 5 units at each time point from 1 to 4. Thus,
total 14 units of flow value can be computed in time step 7 which is the earliest arrival
partial contraflow solution. However, it is directly dependent with time horizon. Thus, its
complexity is pseudo-polynomial.
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Figure 4: EAPCF solution on general network

Theorem 1. On s-d network, the EAPCFP can be solved in pseudo-polynomial time com-
plexity by reversing only partial arc capacities at any time.

Saving unused arc capacities in Step 4 does not violate the optimal solution obtained from
Algorithm 1. Thus, the optimality proof of Theorem 1 is as in [10, 9]. Moreover, the com-
plexity of Algorithm 1 is dominated by the complexity of Step 3. As the earliest arrival flow
computation in Step 3 using algorithms of [4, 12] have pseudo-polynomial, the complexity
of our algorithm is pseudo-polynomial on two terminal general network with arc reversals
at any time.
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By reversing the arc direction at time zero, we solved the EAPCFP on two terminal series-
parallel network in strongly polynomial time complexity. A single arc e = (v, w) with tail
node v and head node w is series-parallel. Let G1 and G2 be two series-parallel graphs
with nodes s1 and d1, and s2 and d2, respectively. Then, the graph S(G1, G2) obtained by
identifying d1 as s2 in the series combination is a series-parallel graph with s1 and d2 as its
terminals. The graph P (G1, G2) obtained by identifying s1 as s2 and also d1 as d2 in the
parallel combination is a series-parallel graph with s1(= s2) and d1(= d2) as its terminals.

First we apply Algorithm 1 on two terminal series parallel network. With the temporally
repeated minimum cost circulation flow (MCCF) algorithm of [11], we compute the EAPCF
solution in strongly polynomial time with partial reversals of arc capacities. A MCCF
solution has minimum cost if and only if the corresponding residual network does not contain
a cycle with negative cost. The main advantage in series-parallel graphs is that every cycle
in the residual network has nonnegative cycle length. In the auxiliary network N ,, the
maximum dynamic partial contraflow problem is solved using the MCCF algorithm of [11].
As the obtained temporally repeated flow satisfies the earliest arrival flow property, i.e., a
cumulative amount of flows reaching (leaving) the sink (source) in every considered time
point and all preceding time points of the considered one have to be maximal, the optimal
solution to the EAPCFP is similar to the solution of maximum dynamic partial contraflow
problem.
Example 4. Figure 5(a) represents a series-parallel contraflow network, Figure 5(b) is the
auxiliary network and Figure 5(c) gives the temporally repeated flow solution for the earliest
arrival contraflow problem.
Theorem 2. On s-d series parallel network, the EAPCF solution can be computed in
O(nm+mlogm) time complexity by reversing only partial arc capacities at time zero.

As there is not any polynomial time algorithm to solve the EAPCFP on two-terminal general
network with arc reversals at time zero, we investigate its approximation solution. Authors
in [5, 6] presented a polynomial time approximation algorithms with complete contraflow
configuration at time zero in both discrete and continuous time settings that obtain a flow
value within (1− ε) of optimal earliest arrival contraflow on two-terminal general network.
Problem 2. Let N = (V,A, b, τ, s, d, T ) be a two-terminal network. Let ε > 0 be given. The
problem is to find an approximation solution for EAPCFP from source s to sink d within a
factor of (1− ε), for ε > 0 in time T if the direction of the arcs can be reversed at time zero
by saving unused arc capacities.

To solve Problem 2, we present a fully polynomial approximation algorithm, Algorithm 2.
In Step 3, we solve the approximate earliest arrival flow problem using the algorithm of [3].
Algorithm 2. Approximate EAPCF algorithm

1. Input: Given an evacuation network N = (V,A, b, τ, s, d).

2. Obtain auxiliary network N = (V,E, b̄, τ̄ , s, d).

3. In N solve the earliest arrival flow problem on fully polynomial time approximate
algorithm of [3].

4. Calculate scap(e, θ) = be − xē(θ). The capacity of the arc e at time θ is saved if
scap(e, θ) > 0, θ = 1, . . . , T .

5. Obtain (1− ε)-approximation solution of EAPCFP for the network N .
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Figure 5: EAPCF on two terminal series parallel graph

The fully polynomial approximate algorithm of [3] works as follows. Set the initial flow
x = 0, scaling factor ∆ = 1, b(v, w) = b(v, w), ε > 0, and Γ = φ. The algorithm combines
capacity scaling with the shortest augmenting paths algorithm. In their dynamic networks,
all capacities are evenly divisible by ∆ = 1. Initially the static flow is obtained using shortest
augmenting paths algorithm until the flow value exceeds m

ε where the residual capacities are
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rounded down to the nearest even number. The flow computed from each augmentation is
added to a set of chain flows Γ that will give the final dynamic flow. Thus, each successive
phase uses the residual networks obtained from previous phase that is divisible by ∆, multiple
of 2, augments flow along shortest paths until the flow value of the new augmentation exceeds
∆m

ε , adds the augmenting chain flows on Γ, and finally rounds the residual capacities down
so that they are evenly divisible by 2∆. This process continues until there is no augmenting
path of length less than or equal to T .
Theorem 3. Algorithm 2 computes (1 − ε)-approximation for EAPCFP on two-terminal
arbitrary networks in O(mε−1(m+ nlogn)logU) time, where U is the maximum capacity of
the network .

Proof. Algorithm 2 is feasible as all steps are feasible. First, the auxiliary network N is
constructed from given network by reversing the direction of arcs at time zero. On N ,
(1 − ε)-approximate earliest arrival flow is computed using algorithm of [3]. According to
[5, 6], thus obtained (1 − ε)-approximate earliest arrival flow on N is equivalent to the
(1− ε)-approximation for EAPCFP on original network.

Moreover, the fully polynomial time approximation algorithm for earliest arrival flow of [3]
requires O(mε−1(m + nlogn)logU) time. Thus the complexity of Algorithm 2 requires the
similar complexity to compute the approximate EAPCF solution.

Algorithms 1 and 2 solve the EAPCFP in discrete time setting. Using natural transformation
of [2], these algorithms can be converted into continuous time. Thus, the EAPCFP can be
solved in continuous time with the same complexity as in discrete time setting.

4 Conclusions

In literature, the evacuation planning problem with complete contraflow configuration of
the evacuation network has been studied. Here, partial contraflow configuration approach
is introduced by reversing only partial arc capacities. The earliest arrival partial contraflow
problem is solved with efficient algorithms. The problem is solved in strongly polynomial
time in two terminal series-parallel network and in pseudo-polynomial time in two terminal
general network. An approximate solution to the earliest arrival partial contraflow problem
has been obtained on two terminal general network.

To the best of our knowledge, the problem we introduced is for the first time in the partial
contraflow approach. Moreover, we are interested to extend the partial contraflow model and
algorithm to solve other dynamic network flow problems with constant as well as variable
transit times and make them more relevant in applications.

Acknowledgment. The first author would like to acknowledge the Alexander von Hum-
boldt Foundation for the support of her post doctoral research stay at TU Bergakademie
Freiberg.
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