

A Combinatorial Approximation Algorithm for Selecting the

Gate Sizes from Finite Sets in VLSI Circuits

Nodari Vakhania

*1
 and Frank Werner

2

1
Science Faculty, State University of Morelos

Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico

Inst. of Computational Math., Akuri 8, Tbilisi 93, Georgia

tel.: +52 777 329 70 20
2
Fakultat fur Mathematik, Otto-von-Guericke-Universitat,

PSF 4120, 39106 Magdeburg, Germany

Email address: frank.werner@ovgu.de

tel.: +49 391 67 12025

fax: +49 391 67 11171

e-mail: nodari@uaem.mx ; frank.werner@ovgu.de

Abstract

In this paper, we consider a problem of VLSI design occurring in the routing phase. The problem is to

determine the optimal size selection for the gates in a combinatorial circuit which uses the problem of

finding a shortest path in an oriented acyclic graph for making certain updates between any two

successive iterations. For this NP-hard problem, we give an approximation algorithm.

Key words: VLSI design, combinatorial circuits, NP-hard problems, approximation algorithm,

shortest paths

1. Introduction

The design of VLSI (very large scale integrated) circuits belongs to the hardest problems

in combinatorial optimization. The design of such circuits is a multi-stage process which

can be roughly divided into three types of sub-problems: partitioning, placement, and

routing.

In the partitioning phase, the chip is split into smaller pieces which can be easier treated.

Here it is typically assumed that these pieces can be designed independently of the other

ones.

In the placement stage, the locations of all circuit gates (also called blocks) within the

chip are fixed and a list of the gates which need to be connected with wires is generated.

Typically, a cost is assigned to each placement and then this cost function is minimized.

* Corresponding author

mailto:nodari@uaem.mx
mailto:frank.werner@ovgu.de

38 Vakhania and Werner / IJORN 1 (2012) 37 – 52

We only note that another type of a placement problem is floor planning which arises if a

circuit is decomposed into a number of gates which are to be routed separately.

In the routing phase within the physical design of VLSI circuits, one wishes to find a

realization of the connections determined in the placement phase. More precisely, routing

deals with finding the layouts for the wires connecting the terminals on the gates.

Since the number of possible routes is huge, the routing problem is computationally very

hard. Even the determination of an optimal layout (e.g., one with a minimum wire length)

for a single net is NP-hard so that the existence of a polynomial algorithm is very

unlikely. For this reason, most routing algorithms are of heuristic nature.

Due to the complexity of the problem, routing is often divided further into global routing

and detailed routing. While in global routing, the exact geometric details are still ignored,

and in some sense, only `loose' routes for the wires are determined, the detailed routing

phase completes this point-to-point wiring by specifying such geometric information as

the location and width of the wires and their layer assignments. In the detailed routing

phase, the output from the global routing is used and then the exact geometric layout of

the wires for connecting the gates is determined. From a graph-theoretical point, the

detailed routing problems include the determination of vertex-disjoint Steiner trees in a

grid. In particular, one of the main problems in detailed routing consists in channel

routing. However, even by using this splitting into global and detailed routing, each of

these phases remains NP-hard. For instance, the global routing problem is NP-hard since

it is at least as hard as the minimum Steiner problem in graphs which is contained as a

special case.

In the routing phase, the primary goal is to determine feasible routes, and if so, a

particular objective function is considered. Often it is distinguished between two-terminal

and multi-terminal nets. Many of the algorithms for such problems are variants of shortest

path algorithms. For global routing, two specific graph models are typically used, namely

a grid graph model and a channel-intersection graph model. In two-terminal algorithms,

often Dijkstra's algorithm is employed on intersection graphs or Maze routing and

Hadlock's algorithm is used on grid graphs. The objective function is typically described

as a function minimizing the cost of the connections such as the wire length or edge

congestions, or a linear combination of several terms (see e.g. [20]).

As already mentioned, typically heuristic or approximation algorithms are used for the

particular sub-problems arising in the VLSI design. Since there exists a huge number of

publications dealing with the particular sub-problems resulting in the different stages, we

can mention here only a few works. An early introduction into the VLSI design for

A Combinatorial Approximation Algorithm for Selecting the . . . 39

analog and digital circuits can be found e.g. in [11]. Sherwani [17] presented the basic

concepts and algorithms in the area of VLSI design.

For the circuit partitioning and placement phases, e_ective memetic algorithms have been

presented and discussed e.g. in [1]. Particularly for the routing phase, a recent overview

on global routing in VLSI dealing with algorithms, theory and computation has been

given in [9]. Several integer linear programming models for global routing have been

presented in [4]. Global routing was also considered in [8], where also a polynomial time

approximation algorithm has been given for the global routing problem which is based on

an integer programming formulation. This algorithm ensures that all routing demands are

satisfied concurrently such that the overall cost is approximately minimized. It turned out

that their new algorithms performed well compared with other algorithms based on

integer programming models. Combinatorial algorithms particularly for the detailed

routing phase have been presented in [19]. There have been recently developed some

refinement techniques to the global routing problem (see e.g. [21]).

Genetic algorithms for the problems of channel routing can be found e.g. in [15]. More

general, the discussion of genetic algorithms for VLSI design, layout and test automation

was discussed in detail in [16]. Recent particle swarm algorithms for routing in VLSI

circuits have been given e.g. in [2]. A recent optimization algorithm for the VLSI design

which is based on grid graphs was suggested in [13]. This algorithm constructs a maze

routing path such that the interconnect delay from the source to the sink is minimized.

The authors introduce a novel look-ahead scheme which is applied to speed up the

running time of the algorithm and which provided a significant improvement in the

performance over some existing routing algorithms.

In this paper, we consider a problem occurring in the routing phase of VLSI design. We

consider a combinatorial circuit with a number of gates with assigned available integer

size and integer delay values resulting from the sizes of the gates. The goal is to

determine a feasible size selection for the gates such that in the corresponding oriented

acyclic graph with the gates as nodes, the resulting critical path has a minimal length. For

this NP-hard problem, we present an approximation algorithm. In contrast to most other

algorithms in this area which are either based on continuous optimization or on a simply

greedy approach, our approximation algorithm has a maximum absolute error equal to the

maximum difference between the largest and smallest overall delays taken over all gates.

The greedy algorithm is the most widely used approach for gate sizing (see e.g. [14, 10,

18, 5]. This method iteratively resizes the nodes on (or near) the critical path by means of

particular heuristics. We note that there exist several papers in the literature dealing with

gate-size selection problems using a di_erent setting than ours. Among them, we mention

here e.g. the papers [6, 3, 12]. In [6], the problem of choosing optimal gate sizes from a

40 Vakhania and Werner / IJORN 1 (2012) 37 – 52

library to minimize the total circuit area subject to timing constraints was considered.

Beeftink et al. [3] presented an algorithm for selecting a good set of gate sizes to

minimize of a prescribed measurement. The error function quanti_es the discrepancy in

the measurement when a required gate size is replaced by an available gate size. The

algorithm searches for a set of gates minimizing the delay error or the size error. Joshi

and Boyd [12] considered the problem of choosing the gate sizes in a circuit to minimize

the total area subject to timing constraints. In contrast to the problem considered in this

paper, a continuous problem in the form of a geometric program (i.e., the objective and

constraint functions have a special form) is considered, where upper bounds on the gate

delays are used. For this problem, large circuits have been considered such that the

associated geometric program has about three million variables and more than six million

monomial terms in its constraints. A comparative study of some algorithms for gate

sizing can be found e.g. in [7]. In particular, this paper compares _ve di_erent algorithms

on constraint free delay optimization and delay constraint power optimization. It turned

out that one of the approaches was superior to the widely used greedy approach. We also

note that in contrast to other papers on gate size selection dealing with continuous

functions, we select the gate sizes from _nite sets and present a combinatorial approach in

this paper.

The remainder of this paper is organized as follows. In Section 2, we formulate the

problem considered in more detail. The main concepts of the algorithms are presented in

Section 3. Finally, in Section 4, we give some concluding remarks.

2. The Problem

The problem investigated in this paper can be formally described as follows. We are

given an oriented acyclic graph . Each node of G represents one of n + 2

objects (we call them further gates). Gate is characterized by the set of available

integer sizes and the set of corresponding integer time delays. Namely, to the gate ,

one of the following integer sizes can be assigned. The delay time

of gate depends on the size of this object as well as on the sizes of its immediate

successors: from one side, with increasing the size of a gate its delay is decreasing; but

from the other side, with increasing the size of its successors the delay of a gate is

increasing. So, for each gate , we are given two sets of integer delay values

 ́ ́ ́

And

 ́́ ́́ ́́

A Combinatorial Approximation Algorithm for Selecting the . . . 41

(in general, we will have ́ ́́ , ,). The delay ́ is the delay of the

gate imposed by the size . Moreover, is the additional delay which will imply gate i

of size ́́ for its direct predecessor gates (their delays will increase if the size of gate is

increased).

We consider the overall delays

 ́ ́́ , .

The gates and are fictitious gates. We represent them in G as source and sink

nodes, respectively. We set ; ́ ; the values ́́ are not defined (́),

 ́ , and the values ́́ are given numbers. If the gate has the

size , then to any arc , the delay of gate is assigned. A solution of the

problem is defined by the assignment function

 , ,

A solution { } is feasible if

∑

 ,

where is a given integer bound. A feasible solution , which yields the minimal

length of a critical path in its corresponding graph , is an optimal solution of the

problem.

3. Main Concepts and the Algorithm

First, we give a brief overview of the algorithm we subsequently present. We obtain an

initial feasible solution by assigning to each gate its smallest available size. Obviously,

if this solution is not feasible, then there exists no feasible solution. Then we iteratively

build a new feasible solution by selecting a particular gate on the currently determined

critical path, and we assign to it a new size. The gate and size selection is accomplished

by means of the introduced rate functions. The rate function measures the maximum

delay fall on one unit of increased size. We also note that some of the assignments might

be later revised.

Next, we present the main concepts of the algorithm in more detail. As noted above, the

algorithm presented here obtains an initial feasible solution by assigning to each gate

 its smallest available size . If this solution is not feasible, i.e., if the sum of

assigned sizes of all gates is greater than the given bound, then there does not exist a

42 Vakhania and Werner / IJORN 1 (2012) 37 – 52

feasible solution and the algorithm stops. Otherwise, it determines a critical path in the

obtained graph . Then one particular gate is determined on and a new, greater than

the current, size is assigned to it. This decreases the delay of this gate and hence, the

length of P0 is decreased. Then the algorithm proceeds with the next iteration

determining again a critical path in the new graph and the node on it whose size is

increased at that iteration. The algorithm continues in an analogous way until if finds out

that it cannot increase further the size of the selected gate. The distance between the

obtained feasible solution and an optimal one is no more than some constant derived

from the given problem instance.

We denote by the particular critical path determined at iteration . The gate whose

size assignment is increased at this iteration, is called a substitution gate. We denote the

graph corresponding to iteration by . The graph is obtained from by the

correction of the time delays with respect to the substitution at iteration . We denote

by the length of the path in the graph . We use the short form for the

length of the critical path at iteration .

We call the sum of the sizes of all gates at iteration the overall size at that iteration.

Moreover, we denote by the iteration of the last substitution of gate by iteration .

Further, we denote by ; , the size selection of gate at the

beginning of iteration . , ; and , , are not defined since at

the beginning of iteration , we have no size selections. So, the size of gate at

iteration is , and the corresponding delay is . We call the regular

size selection of gate at iteration . The estimating size selection of gate i at iteration ,

 is defined by

 {

 }

Later, we use the notations

and

 .

Notice that all the above magnitudes are positive.

The estimating size selection is evaluated iteratively for each gate on the currently

determined critical path for determining the substitution gate. Only to the selected

A Combinatorial Approximation Algorithm for Selecting the . . . 43

substitution gate, there will be assigned the (new) estimating size selection while the size

selection of all other gates will remain the regular ones.

Let be the iteration of the latest substitution of the gate . We say that gate is revised at

iteration ́ if ́ , i.e., to gate , there is reassigned its regular size

selection corresponding to the beginning of the iteration of its last substitution or,

equivalently, the size of gate is decreased by and its delay is increased

correspondingly by . Accordingly, we say that gate is restored at iteration ,

 ́ if i.e., if the estimating size selection of gate at iteration

is reassigned to gate at iteration .

If we substitute gate at iteration , we may revise some gates, substituted earlier and

related to gate in a certain way. The revision of these gates may cause the restoration of

some other related gates, and so on. We discuss this in detail later, now we give a simple

example for the illustration.

We briey sketch the fragment of a graph . Gate is the substitution gate at iteration ,

and the gates and are the former substitution gates at the iterations and ,

 , respectively (here we just assume that the three gates are substitution

gates, later we discuss how we determine the substitution gate). The gate is such that

 , , . We just indicated that is a substitution gate at iteration .

This means that its current (regular) size will be replaced by the greater (estimating) size

which will cause the decrease of the length of . However, gate belongs to two other

(former) critical paths at the iterations and (we now assume that the three paths are

related in a certain way, we specify what we mean by this later). Therefore, if we revise

the size assignment of the gates and , we will still decrease the paths and . As a

result, we increase the size of one gate instead of increasing the size of three gates, while

the length of (at least) three related critical paths are decreased, although we are forced to

revise two former substitution gates (we could substitute only gate from the beginning if

we would know that this gate will later belong to several related critical paths).

Now, if the gates and are such that some other gates have been revised at their stage

of substitution, then the revision of the gates j and k might cause the restoration of those

other gates, as we will see later.

While we substitute the gate , we might or might not declare it as active for the specific

set of gates. If we declare the gate as active, we will later consider the possibility of its

revision. If we do not declare as active, then its size selection will certainly not be

revised further since we do not doubt about its new estimating size selection.

44 Vakhania and Werner / IJORN 1 (2012) 37 – 52

The set of active gates of a gate at iteration is denoted by . Below we specify the

set of gates for which we will declare a substitution gate as active considering three

separate cases.

Case (a). At the initial stage , there is no substitution gate and therefore, there is no

active gate, i.e., , . Suppose that is a substitution gate at iteration .

Assume that

(the length of the critical path at iteration is less than the length of the critical path at

iteration and therefore, the critical path at iteration cannot be again). In this case,

we declare as active for all , at iteration ,

 { }

We apply this rule at any further iteration unless the corresponding substitution gate is

such that (we consider this case below).

Case (b). Assume that is the substitution gate at iteration such that but

 for any other .

Similarly to the case (a), we declare gate as active for all gates , if the

following additional condition holds:

∑
 (1)

While substituting gate , we revise all gates (decreasing in this way the overall

size) and all gates become non-active at iteration , that is, we set

 { }

for any such that . Now we declare gate as active for if

∑ { }
 (2)

Finally, let be any gate such that for at least one and

let (notice that . We declare gate as active for gate if

∑
 (3)

We declare a substitution gate as active for gate only if in the case of a later

substitution of , we will reduce the overall size if we revise gate . When we revise gate

A Combinatorial Approximation Algorithm for Selecting the . . . 45

 , we restore all gates from which are not 'related' to the (new) substitution gate

(later we explain what is meant with 'related'). These sets of gates are specified in the left-

hand sides of formulas (1)-(3).

Case (c). Assume that and for at least one .

First, we introduce the notion of the related gate set for . The related gate set of in

relevance with , is the (possibly empty) set of gates that have been active

for both gates and at the stage of the substitution of gate :

 .

The overall related gate set for gate at iteration is given by

 { }.

The unrelated gate set for gate in relevance with gate at iteration is

and the overall unrelated gate set is

 {

 }.

Here we give some intuitive explanation in connection with the introduced notions.

Suppose that we substitute gate revising (the former substitution) gate such that

 . Let gate be such that but , i.e., let
 . Notice

that (otherwise gate l would be active for gate i at iteration). Then the

revision of gate will cause the increase of the critical path (remind that gate is

also a former substitution gate and that it is revised at iteratio h). So, the (new)

substitution gate is not related to the former substitution gate and therefore, we restore

its (last) substitution.

By our local balancing rule, whenever we substitute gate , we revise gate and

restore all gates
 .

Similar to the case (b), while substituting gate i, we revise all gates but in

addition, we now apply the local balancing procedure and restore all gates
 .

Quite analogously to the case (b), we declare gate as active for the gates of the type ,

and (see the description above) if the following modifications of the formulas (1)-(3),

respectively, hold:

∑ (∑
)

 (1’)

46 Vakhania and Werner / IJORN 1 (2012) 37 – 52

∑ (∑
) { }

 (2’)

∑ (∑
)

 (3’)

Now we want to extend our local balancing rule so that we can apply it for the case when,

in general,
 , for

 , and so on.

Suppose that we apply the local balancing rule while substituting gate at stage

 , revising gate and restoring gate correspondingly. Then we apply

recursively the local balancing rule to gate (whose size assignment, similarly to gate , is

increased) with a slight modification. Let us go back to the stage . At this stage, by

the local balancing rule, the gate would be restored or remained unchanged

depending on whether
 or , respectively. Therefore, while

we restore gate at stage , we need to revise only those gates from which were

restored earlier, i.e., the gates from
 (the restoration of gate will cause

the same effect as that at the stage of substitution of gate except that when we restore

gate , we do not revise all gates but only those gates from the set

 . We recursively continue an analogous procedure for the earlier stage

(former) substitution gates until we reach the gates with .

The above extension of the local balancing rule is called the global balancing procedure

according to which, whenever we substitute a gate, we rebalance, in the way explained

above, the size assignments of the gates `involved' in this substitution.

The set of all gates involved in the global balancing procedure, corresponding to the

substitution of gate , can be represented in a useful way by a rooted tree , where

the root represents the gate . The set aih is represented by the successors of the node ,

the set for a gate is represented by the successors of node , and so on. The

leaves of the tree represent the gates with . We consider as a

symbolic representation of the fragment of the graph . We do not put arcs in

since this could obviously violate the structure of (not all successors of a node in

 are real successors of this node in). However, we can still consider the paths in

 passing through the nodes related to the set of active gates and thus involved in

the global balancing procedure. For example, we have or

depending on whether or , respectively (notice that).

To reflect the overall size variations caused by the global balancing procedure, we

introduce the following notions.

A Combinatorial Approximation Algorithm for Selecting the . . . 47

Suppose that gate i has been a substitution gate. Then the perturbed balance coefficient

for a gate in relevance with gate is recursively defined as follows:

 ̃

{

 ∑

 ∑ ∑ ̃

The balance coefficient reects the overall size shift which will be caused by the

substitution of gate :

 {

 ∑

 ∑
 ∑ ̃

Using the introduced notations, we can rewrite formulas (1')-(3') for the general case:

∑ ̃
 (1*)

∑ ̃ { } (2*)

∑ ̃ (3*)

The sets of active gates, generated in accordance with the points (a)-(c) might be

corrected during the execution of the algorithm. We specify this in points (i)-(iii) below.

Let i be a substitution gate at iteration h. Then:

(i). The set of active gates of is released by the stage , i.e.,

 .

(ii). If, in addition, ́ is the earliest iteration such that, first, ́ and second, is

not revised at any of the iterations ́, then the last size assignment of gate

 , will not be further revised. So, we set

 ́ ́ { }

for any such that ́ .

48 Vakhania and Werner / IJORN 1 (2012) 37 – 52

(iii). For any gate to which, at iteration , the two above points are not applicable, we

set

The following lemma shows that any restoration in the global balancing procedure

increases the overall size.

Lemma 1. For any gates and , we have ́ .

Proof. The case is obvious. Suppose that and
 .

Observe that gate has been declared as active for gate at the iteration of its

substitution. So, we could have three possibilities at iteration : Gate could be of the

type or , and one of the formulas (1), (2) or (3), respectively, had to be satisfied (see

the case (b) above). Therefore, when we restore gate j in the global balancing procedure,

the gates, which will be revised, are those specified in the left-hand sides of the formulas

(1)-(3), respectively, and our claim is obvious.

The case
 now follows recursively from the de_nition of ̃ and the

formulas (1*)-(3*).

From Lemma 1 and the definition of the global balancing procedure, we get the

following. Corollary 1. Restoration (revision, respectively) of any gate in the global

balancing procedure increases (decreases, respectively) the overall size.

Lemma 2. Inequality

|
 | { } holds for any gates

 such that
 is defined.

Proof. Since
 is defined, by definition, the gate has to be declared as active

for gate at iteration . At that iteration, gate could be a gate of one of the types

or (see the proof of Lemma 1) and one of the formulas (1*), (2*) or (3*), respectively,

had to be satisfied. Now, notice that the elements in the sum of the left-hand sides of the

formulas (1*)-(3*) constitute exactly the set
 , and our claim now follows from

Lemma 1.

Consider the node . In general, we have

 .

Suppose that the condition of proximity of these critical paths holds (see the definition of

a active node). Then, by substituting the node and revising all , we are able to

A Combinatorial Approximation Algorithm for Selecting the . . . 49

decrease simultaneously all critical paths
,

,
 while increasing the overall size

ones. In contrast to this fact, we could substitute for each critical path different nodes

increasing the overall size several times (although decreasing the lengths of the paths

further). We control this balance by means of the rate functions.

We define the rate function , as follows:

 {

It should be clear that the `profitability' of a particular node depends not only on its own

characteristics but also on the structure of the delay graph and the distribution of the

critical paths on it.

On the way of improving the initial solution , we iteratively increase the sizes of

particular nodes decreasing in this way their delays. As a result, one or more critical paths

are becoming non-critical, but we obtain new critical paths. Since we have an overall size

bound, we are interested in the maximum `relative decrease' of the delay on one unit of

increased size. This relationship is measured by the above rate function.

Thus, the main strategy of the algorithm is roughly the following: find not the substitution

which maximally decreases the length of but to substitute the node which will

decrease the delay possibly less but the `overall decrease' of the delay on the unit of

increased size will be the best. Thus, we prefer to make `smaller' improvements which are

correct in the above sense. Below we give the general description of the algorithm.

Algorithm

Step 0

Construct the initial solution ;

 .

Step 1

Determine the critical path and with

 { };

Substitute gate ;

50 Vakhania and Werner / IJORN 1 (2012) 37 – 52

Perform chain-revised and reverse-revised operations for gate ;

Determine the set .

Step 2

If , then and go to Step 1

else stop { }.

4. Concluding Remarks

In this paper, we have considered a problem arising in the design of VLSI circuits. In

particular, we presented an approximate algorithm for determining the size of the gates

which has the following properties:

1. Let be an optimal solution, the solution determined by the above algorithm, and

 = max{ { } }.

For the algorithm presented above, we obtained the estimation

 ()

where denotes the length of a critical path in the graph .

2. Let

 [

 { { } }

 { { } }

 { { } }

 { { } }

] .

Then the running time of the algorithm is bounded by

 .

We also note that for taking into account the particular sizes of the predecessor nodes in

determining the additional time delays caused by the gate , we can extend the model

considered by allowing for each gate the time delays ́́ , , where

 and are the size selections of the gates and , respectively.

A Combinatorial Approximation Algorithm for Selecting the . . . 51

Acknowledgements

This work has been supported by Deutscher Akademischer Austauschdienst (DAAD) and by

CONACyT grant 160162. The first author is grateful to Prof. Dr. Gunter Hotz, who suggested the

problem, for many stimulating discussions.

References

[1] Areibi, S. and Yang, Z., 2004 Effective memetic algorithms for VLSI design = Genetic

algorithms + Local search + Multi-level clustering, Evolutionary Computation, 12, 327-

353.

[2] Ayob, M.N., Yusof, Z.M., Adam, A., Abidim, A.F.Z. and Ibrahim, I., 2010, A particle

swarm optimization approach for routing in VLSI, 2nd International Conference on

Computational Intelligence Communication, 49 - 53.

[3] Beeftink, F., Kudva, P., Kung, D. and Stok, L., 1998, Gate-size selection for standard cell

libraries, Proceedings ICCAD, 545-550.

[4] Behjat, L., Vanelli, A. and Rosehart, W., 2005, Integer linear programming models for

global Routing, INFORMS Journal on Computing, 18, 137 -150.

[5] Borah, M., Owens, R.M. and Irwin, M.J., 1995, Transistor sizing for minimizing power

consumption of CMOS circuits under delay constraint, International Symposium on Low

Power Design, 167 -172.

[6] Chuang, W., Sapatneka, S. , Hajj, I.N., 1995, Timing and area optimization for standard-

cell VLSI circuit design, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 14, 308 - 320.

[7] Coudert, O. , Haddad, R. and Manne, S., 1996, New algorithms for gate sizing. A

comparative study, Proceedings of 33rd IEEE/ACM Design Automation Conference, 734 -

739.

[8] Deza, A., Dickson, C., Terlaky, T., Vanelli, A. and Zhang, H., 2010, Global routing in

VLSI design: Algorithm, theory and computational practice, Optimization Online,

Manuscript, 24 pages.

[9] Dickson, C., 2007, Global routing in VLSI: Algorithms, theory, and computation, Master

Thesis, McMaster University, 64 p.

[10] Fishburn. J.P., 1992, LATTIS: an iterative speedup heuristic for mapped logic, Proceedings

of 29th ACM/IEEE Design Automation Conference, 488 - 491.

[11] Geiger, R. L., Allen, P.E. and Strader, N.R., 1984, VLSI design techniques for analog and

digital circuits, MacGraw-Hill.

[12] Joshi, S. and Boyd, S., 2008, An efficient method for large-scale gate sizing, IEEE

Transactions on Circuits and Systems, 55, 2760 - 2773.

[13] Khalil-Hanui, M. and Shaik-Husin, N., 2009, An optimization algorithm based on grid-

graphs for minimizing interconnect delay in VLSI layout design, Malaysian Journal of

Computer Science, 22, 19 - 33.

[14] Lee, C.M. and Soukop, H., 1984, An algorithm for CMOS timing and area optimization,

IEEE Journal of Solid-State Circuits, 19, 5, 781 - 787.

52 Vakhania and Werner / IJORN 1 (2012) 37 – 52

[15] Lienig, J. and Thulasariman, K., 1993, A genetic algorithm for channel routing in VLSI

circuits, Evolutionary Computation, 1, 203 - 311.

[16] Mazumder, P. and Rudnick, E., 1998, Genetic algorithms for VLSI design, layout and test

automation, Prentice Hall.

[17] Sherwani, N., 1999, Algorithms for VLSI physical design automation, Kluwer Academic

Publishers, Dordrecht.

[18] Shyu, J.M., Sangiovanni-Vincentelli, A., Fishburn, J.P.and Dunlop, A.E., 1988,

Optimization based transistor sizing, IEEE Journal of Solid-State Circuits, 23, 2, 400 - 409.

[19] Szeszler, D., 2005, Combinatorial algorithms in VLSI routing, Ph. D. Thesis.

[20] Terlaki, T., Vanelli, A. and Zhang, H., 2008, On routing in VLSI design and

communication networks, Discrete Applied Mathematics, 156, 2178 -2194.

[21] Yang, Z., Areibi, S. and Vanelli, A., 2007, An ILP based hierarchical global routing

approach for VLSI ASIC design, Optimization Letters, 1, 281 - 197.

