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Abstract 

The bottleneck product rate variation problem minimizes the maximum deviation between the 

actual and the ideal cumulative production of a variety of models of a common base product. It 

is known as a sequencing problem in mixed-model just-in-time production systems. A common 

assumption is that early and tardy production of a product are equally undesired. Therefore, the 

problem has been extensively studied with the assumption of equal penalty to be issued for 

inventory and for shortage with several pseudo-polynomial exact algorithms and heuristics. 

However, there are cases where manufacturers judge earliness and tardiness differently, e.g. if 

failing to satisfy a customer is worse than keeping items on stock. 

In this paper, we consider the problem with different penalties for inventory and for shortage 

and propose a pseudo-polynomial exact solution procedure.    
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1.  Introduction 

Manufacturing systems have developed from mass production to mass customization to 

satisfy the customer demands for a variety of high quality products at reasonable prices. 

Therefore, manufacturing companies strive to improve their sales by increasing the 

product variety with a balance strategy [25]. This balance strategy aims to minimize the 

complexity of a general mixed-model manufacturing system. It has recently been 

investigated and a solution procedure has been proposed by Wang et al. [26]. The 

opposed constraints of quality and costs force manufacturing companies to look for 

approaches to cut down costs without lowering down the quality of the products and 

services in the manufacturing process. For example, the Toyota Production System [20, 

22], commonly known as the just-in-time production in manufacturing systems, aims to 

align the sequence of manufactured model variants to the actual demand of the customers 

in order to eliminate inventories. The challenge of this approach is to prevent shortages 
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while keeping the inventory at a minimum level. Empirical observations have confirmed 

the positive effects of the implementation of just-in-time systems in manufacturing 

companies [see, e.g., 10]. 

Problem with symmetric objective function 

Mixed-model just-in-time (abbreviated as MMJIT) production systems with negligible 

change-over costs between the models of a common base product have been extensively 

studied and implemented in order to respond to the customer demands for a variety of 

models without holding large inventories or incurring large shortages [20, 19,2,6]. The 

sequence planning has been an important issue in mixed-model assembly lines and is 

closely linked to the complexity of the system [28]. A sequence planning of different 

models of a common base product by keeping the rate of usage of all parts used by the 

assembly lines as constant as possible can be useful for the effective utilization of the 

systems. However, such an ideal production may not be possible during production. 

There exists a deviation between the exact cumulative productions and the ideal one. The 

problem which minimizes either the maximum or the total deviations between the actual 

cumulative productions over the observed periods from the ideal one is called the product 

rate variation problem (abbreviated as PRVP) [19]. 

The PRVP has been widely investigated as a non-linear integer programming problem, 

under the assumptions of negligible change-over cost, unit processing time, mixed 

demand, equal penalty for the inventory and for the shortage, and sufficient capacity of 

production since it has a model with a strong mathematical base and wide real-world 

applications, see [2,6]. Several heuristics with good performance have been developed 

though myopic characteristics occurred in them could not eliminated [24]. An exact 

algorithm with pseudo-polynomial time for the PRVP with the objective of minimizing 

the total deviations i.e. the total PRVP (abbreviated as TPRVP) has been investigated in 

[15]. The algorithm solves the TPRVP transforming into an equivalent assignment 

problem. 

The bottleneck PRVP (abbreviated as BPRVP) i.e. the PRVP with the objective of 

minimizing the maximum deviation has also been solved with an exact solution 

procedure for its absolute deviation objective function [23]. The problem is transformed 

into a perfect matching problem which yields a feasible solution and a bisection search 

algorithm works for optimality. The solution procedure has been improved with an 

improved upper bound and with an investigation of the necessary and sufficient condition 

for the existence of a feasible solution [3]. However, the problem remained open for other 

objective functions since it required a suitable upper bound for the corresponding 

objective [5]. The PRVP with the objective function other than the absolute deviation has 

been solved in [7,11] by investigating the upper bounds corresponding to the objective 

functions. 

The problem has some limitations for the effective implementation in the assembly lines 

[2] which may occur because of the assumptions for the modeling of the problem. It is 

interesting and important to relax some assumptions to find solution so that it could be 
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implemented more effectively. Such attempts have been taken to some aspects. For 

example, the BPRVP with significant change-over cost and arbitrary processing time, 

instead of negligible changeover cost and unit processing time, has been well studied [see 

27, 16]. This is a two phase multi-objective problem. The problem determines small 

batches of copies of models [see 27, 16] and then sequences the batches over the period 

of production [13]. 

In this paper, we relax another assumption of equal penalty to be issued for the earliness 

and for the tardiness and consider more penalty for the shortage than for the inventory 

since the tardiness seems to be more serious for the manufacturing companies in the 

competitive environment.   

Earliness and Tardiness Penalties 

In general, the problem of matching a specific due date for each job in scheduling 

decisions has been recognized as an important factor [8, 9]. The introduction of penalties 

for earliness in addition to tardiness made scheduling models more realistic in the light of 

the just-in-time philosophy, which not only requires products to be delivered without 

delay to the customer, but also to avoid inventory costs induced by early completion [1, 

17]. This innovation has been included in nearly all scheduling approaches by now. 

Nevertheless, the vast majority of the scheduling models consider a quadratic 

performance measure, namely the sum of squared deviations of the completion times of 

the jobs from their due dates [4]. Cai and Zhou hypothesize that this is since quadratic 

performance measures are relatively easy to investigate if randomness is involved [4]. In 

their own work, they penalize earliness and tardiness with different weights in order to 

include the more realistic assumption that costs incurred by either earliness or tardiness is 

often different in practice. 

In this paper, we investigate a solution procedure for the BPRVP with unequal penalty for 

the earliness and for the tardiness. More precisely, we assume that the penalty for 

tardiness is higher than the penalty for earliness, because frequent and extensive shortages 

are likely to threaten the trust of the customers in the ability of a company to deliver. 

Consequently, there is not only cost incurred by the actual late delivery, such as 

contractual penalties, but also opportunity by lost future demand if customers switch to 

competitors [21]. In turn, inventory cost is rather linear, with a slight exponential effect 

caused by obsolescence [18]. 

The paper is structured as follows. In Section 2, we present a non-linear integer 

programming formulation. Section 3 discusses the solution procedure for the problem 

with time window in Subsection 3.1, the feasible solution in Subsection 3.2, and 

optimality in Subsection 3.3. The last section concludes the paper. 

2.  Problem Formulation 

Let the given time horizon be partitioned into D equal time units, where D stands for the 

total demand of n,      different models with    copies of model i with i = 1, 2, …, n. 
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A copy of a model is produced in a time unit k, which means that the copy of the model is 

produced during the time period from k-1to k, with k = 1, 2, …, D. Let     and    , i = 1, 

2, …, n; k = 1,2,…D, be the actual and the ideal cumulative productions, respectively, of 

model i produced during the time units 1 through k with        
 

 to be the demand rate. 

An inventory holds if            , and a shortage incurs if             . In this 

approach, we argue that it is reasonable to issue more penalty to the shortage than to the 

inventory (see Section 1). The modified non-linear integer programming for the problem 

is the following. 

Minimize       
        {

         
                

         
                  

    (1) 

where       with       are positive integers  

subject to 

 ∑        
      k = 1,2,…,D       (2) 

            , i = 1, 2, …n; k = 2, 3, …, D        (3) 

               , i = 1, 2, …, n        (4) 

      , integer, i = 1, 2, …, n; k = 1, 2,  …, D      (5) 

3.  Solution Procedure 

The BPRVP with symmetric objective function has been solved with an exact solution 

method in pseudo-polynomial time. The method is based on perfect matching extracted 

from a convex bipartite graph for the feasible solution and a bisection search for the 

optimality. The BPRVP with asymmetric objective function can also be solved with this 

procedure with necessary modifications. The convex bipartite graph is constructed over 

the time period, say time window, where a copy of a model can be sequenced. 

3.1.  Time Window 

The time window of a copy of a model i, i = 1, 2, …, n, is determined from the integral 

points where a suitable upper bound B > 0 of the function value crosses the level curves 

i.e. the curves obtained from the corresponding bijective function. The j
th
 copy of model i 

with i = 1, 2, …, n; j = 1, 2, …di, i.e. (i, j), is sequenced in a time unit k in the time 

horizon [1,D] such that the level curves do not exceed B. There exist nD deviations 

between the actual and the ideal cumulative productions of D copies of n models with 

only n+D different values since the actual cumulative production xik, i = 1, 2, …, n; k = 1, 

2,…,D, is sequence-dependent integer from {        }. However, the value of the ideal 

cumulative production kri, i = 1, 2, …, n; k = 1, 2, …, D, is sequence independent rational 

number such that      {
  
 

 
   
 

      }   i = 1,2,…,n. 
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The level curve for copy (i, j) of the objective function is defined as 

Minimize     
            {

       
                

                         
        (6) 

Fig. 1 shows the level curves for an instance (4,6, 10) with unequal penalties. 

The time window for copy (i, j) is      
                                     (7) 

where           and           are the earliest and the latest sequencing times, 

respectively. We can derive the time window for a copy (i, j),  i = 1, 2, …, n; j = 1, 2, …,  

di. 

 

Figure 1. Level curves f
31

ij for the instance (d1 = 4, d2 = 6, d3 = 10) 

 

Theorem 1. Given a suitable upper bound B, the time window      
      for a copy (i, j), 

i = 1,  2, …, n; j = 1,  2, …, di, is  

      
       *⌈  √ 

  

  
⌉  ⌊    √ 

  

  
⌋+        (8) 

Proof: 

The earliest sequencing time           is the unique integer in [1,D] such that when (i, j) 

is sequenced at            , the level curves exceed B but do not exceed when 

sequenced at          . The two inequalities           satisfies are 
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               (9) 

and 

                
                (10) 

i.e.  
  √ 

  

  
              

  √ 
  

  
           (11) 

Therefore,  

           ⌈  √ 
  

  
⌉          (12) 

holds. 

Likewise, the latest sequencing time           is the unique integer in [1,D] such that 

when (i, (j -1)) is sequenced at            , the level curves do not exceed B but exceed 

when sequenced at          . Then           satisfies the following two inequalities 

                                     (13) 

and 

                                 (14) 

i.e. 

     √ 
  

  
             

    √ 
  

  
          (15) 

Thus,            ⌊    √ 
  

  
⌋ holds. 

One may consider additional importance to some models by issuing a weight wi for a 

model i, i = 1, 2, …, n.  

The time windows for each copy of each model of an instance (4, 6, 10) at an upper 

bound     

 
 

are as follows. The time windows for the four copies of the first model of the instance are 

[2, 3], [7, 8], [12, 13] and [17, 18], respectively. Similarly, for the second models the time 

windows are [1, 2], [5, 6], [8, 9], [11, 12], [15,  16] and [18, 19], respectively and that for 

the third models [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16], [17, 18] 

and [19, 20], respectively. 
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The upper bound B > 0 has been investigated for the BPRVP with symmetric objective 

function. The upper bound for the problem with absolute deviation objective was 

investigated to be B = 1 [23]. It was then improved with the value       

 
 , [3]. The 

value has been modified to be         

 
  , m being a positive integer, for the problem 

with different objective functions [11]. The upper bound has been recently improved to 

be             
  where rmin is the minimum demand rate [see 12]. The upper bound 

for the problem with assymetric objective can be modified to be 

    {
        

                

        
                

_      

  (16) 

For a given upper bound B, the time window      
      can be calculated for each (i, j), i 

= 1, …, n; j = 1, …, di, in time O(D). 

3.2. Feasible Solution 

We seek a feasible solution extracting a perfect matching from a convex bipartite graph. 

A convex bipartite graph            , with     {       };     {         

                  } and    {(       )         
     }  is constructed by sequencing 

each copy (i, j), i = 1, 2,  …, n; j = 1, 2, …, di, with each time unit within the time 

window      
     . The time window is feasible if a perfect matching can be extracted 

from the graph G. A perfect matching in G with           exists if and only if 
          for all       and       {                                           } [3]. 

This is the modified Hall's theorem in which an upper bound B > 0 must satisfy the two 

inequalities given in the following theorem. 

Theorem 2. Given a convex bipartite graph G. There exists at least a perfect matching if 

and only if, for all           with       and     
        

                         

B satisfies the inequalities 

 ∑ (⌊     √ 
  

⌋  ⌈         √ 
  

⌉)          
        (17) 

 ∑ (⌈     √ 
  

⌉  ⌊         √ 
  

⌋)          
        (18) 

Proof: 

We show that the two inequalities are the consequences of Hall's condition           

for all 

      where       {                                           }.  

Let                 with       . Then            . 
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Since     
        

                         

we can write    
          and    

           

That is   √ 
  

  
    and     √ 

  

  
    

So  

 ⌈           √ 
  

⌉    ⌊     √ 
  

⌋ 

Therefore, for                          if and only if 

 ∑ (⌊     √ 
  

⌋  ⌈         √ 
  

⌉)          
    

Now consider 

     
         

                 

Then 

       
      and    

         

That is 

      √ 
  

  
  and     √ 

  

  
      

Which implies 

 ⌊           √ 
  

⌋    ⌈     √ 
  

⌉ 

Thus, for                            if and only if  

 ∑ (⌈     √ 
  

⌉  ⌊         √ 
  

⌋)          
     

Hence the proof. 

A perfect matching can be extracted from the graph G with the earliest due date (EDD) 

rule [23]. The EDD rule matches each time unit       to the unmatched copy (i, j) with 

the smallest    
      and              to find a perfect matching. This is a modified 

Glover's EDD rule in which if an unmatched (i, j) does not exist for any k, the algorithm 

stops instead of moving to k + 1. The modified EDD algorithm sequences the lower 
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numbered copies of a model to earlier sequencing times than the higher numbered copies, 

which leads the perfect matching extracted from G to be order-preserving. 

Lemma 1. Let  ̃  be a perfect matching extracted from G. The perfect matching preserves 

the order. 

Proof: 

Let  ̃ be a perfect matching extracted from G using the EDD rule. Since the EDD rule 

matches each       to the unmatched (i,j) with the smallest    
     , it suffices to show 

that    
      preserves the order. 

Clearly 0 < ri < 1, i = 1, …, n, 

    
       ⌊    √ 

  

  
⌋   ⌊    √ 

  

  
    

  
⌋      

       .   

The following theorem assures that there exists an order-preserving perfect matching in G 

if and only if there exists a feasible solution to the problem. 

Theorem 3. Given a convex bipartite graph G with an upper bound B > 0. There exists a 

feasible solution to the problem if and only if there exists an order-preserving perfect 

matching in G. 

Proof: 

Consider a feasible sequence s for any instance to the problem. Then every (i, j), i = 1, …, 

n; j = 1, …,  di, is issued to a unique time unit k, k = 1, …, D. Since the total number of 

copies of all models is exactly equal to the number of time units of the time horizon, there 

is a bijection         , where       and           , i = 1, …, n; j =1, …, di. The 

bijection yields a perfect matching. Lemma 1 shows that the perfect matching is order-

preserving. 

Conversely, suppose that  ̃      be an order-preserving perfect matching in G. If 

(        )               ̃. then                This shows that no two copies compete 

for the same time unit. Moreover, since  ̃ is perfect, there remains no time unit  ̃      

unmatched. The order-preserving of the perfect matching yields a feasible sequence. 

The sequences 3-2-1-3-3-2-3-1-2-3-3-2-1-3-3-2-3-1-2-3 and 2-3-1-3-2-3-1-3-2-3-2-3-1-3-

2-3-1-3-2-3 are the two feasible production sequences which are obtained using the above 

mentioned procedure. 

3.3.  Optimality 

If an instance with the demands, (d1, d2, …, dn), has a feasible sequence with an objective 

function value equal to the lower bound, this sequence is optimal. The above mentioned 
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feasible production sequences are optimal since they are obtained using the time window 

extracted at the lower bound         
   for the inventory and         

   for the 

shortage. However, such a sequence does not exist in many instances [14]. There always 

exists at least a feasible sequence with an objective function value equal to the upper 

bound in all instances. Let 

    {  (   )                  } 

be the set of all feasible solutions. A sequence  ̃    with an objective function value 

equal to the minimum upper bound is optimal. A bisection search algorithm that runs in 

the interval between the lower and the upper bounds finds the minimum upper bound for 

a particular instance. The algorithm yields an optimal sequence in O(logD) time [23]. The 

interval over which the bisection search runs for the BPRVP with the asymmetric 

objective function is 

           
           

   ]. 

4.  Concluding remarks 

The product rate variation problem with equal penalty for the inventory and for the 

shortage has been extensively investigated with a number of heuristics and exact solution 

approaches which are solvable in polynomial time based on the size of the instance. In 

this paper, the bottleneck case of the problem with different penalty for the inventory and 

for the shortage has been studied with an exact solution procedure to obtain an optimal 

solution with the same complexity of the previous problem. A comparative study between 

the optimal solutions for the problems with equal and unequal penalty will be a logical 

next step for further research, so that the impact of differences in the preferences towards 

inventory or shortages can be made explicit. 
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